

Sulfide, Standard Methods by Flow Injection Analysis (FIA)

FLOW INJECTION ANALYSIS (FIA) SERIES

Cartridge Part Number: 333176 Channel Part Number: 333175

Scope and Application

This method is used for determining sulfide in drinking water, surface water, and domestic and industrial wastes according to Standard Methods 4500-S2- D. $_{6}$ The Method Detection Limit (MDL) is 0.2 µg/L sulfide with an applicable range of 2-5,000 µg/L sulfide. A range of 2-250 µg/L sulfide is achieved using a 200-µL sample loop; using a 100-µL loop attains a range of 50-5,000 µg/L sulfide. The range may be extended to analyze other concentrations by sample dilution or use of a smaller sample loop.

Method Performance

Range	2 - 5000 μg/L		
Rate	50 samples / hour		
Precision	<1% RSD at mid-point range		
Method Detection Limit (MDL)	0.2 μg/L		

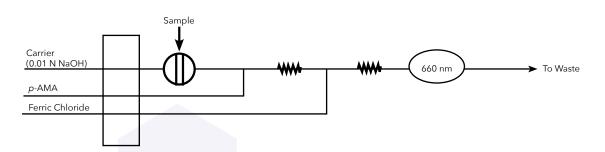


Figure 1. General flow diagram of the FIA system

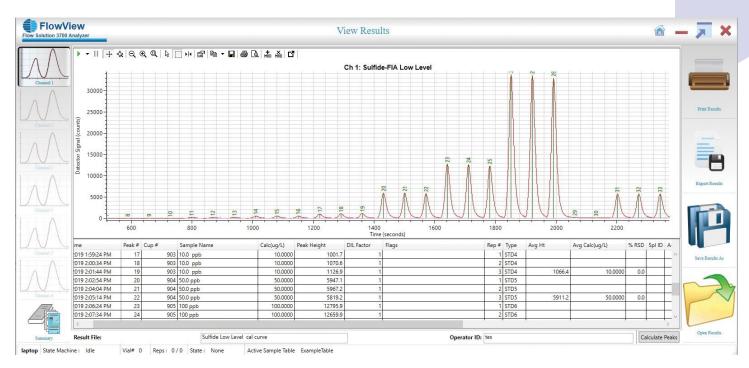
Reagents and Calibrants

Table 1. Reagents and Calibrants

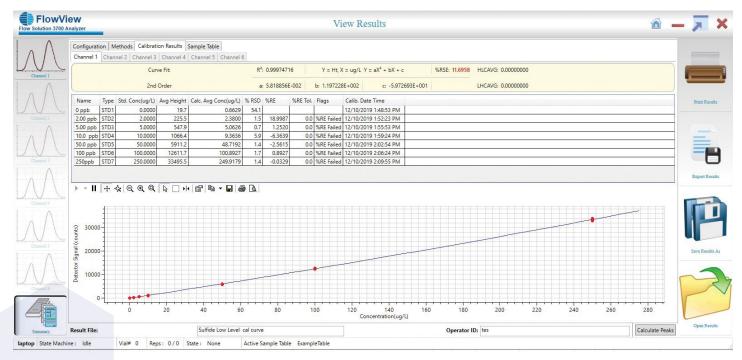
Chemical Name	CAS #	Chemical Formula	Part Number
p-Aminodimethylaniline (N,N-Dimethyl- 1,3-Phenylenediamine Dihydrochloride)	3575-32-4	$C_8H_{12}N_2$ •2HCl	
Deionized Water (ASTM Type I or II)		H ₂ O	
Ferric Chloride Hexahydrate	10025-77-1	FeCl ₃ •6H ₂ O	
Hydrochloric Acid, concentrated	7647-01-0	HCI	
Sodium Hydroxide	1310-73-2	NaOH	
Sodium Sulfide Nonahydrate	1313-84-4	Na ₂ S•9H ₂ O	
Sodium Thiosulfate Pentahydrate	10102-17-7	Na ₂ S ₂ O ₃ •5H ₂ O	
Sulfuric Acid, concentrated	7664-93-9	H_2SO_4	
Zinc Acetate Dihydrate	5970-45-6	$Zn(CH_3CO_2)_2 \bullet 2H_2O$	

Summary of SM 4500-S2-D Method

Sulfide reacts with p-aminodimethylaniline (p-AMA) and ferric chloride to form methylene blue. The absorbance is measured at 660 nm. , This method does not detect acid insoluble sulfides. Assure the quality of the analysis through reproducible calibration and testing of the Flow Injection Analysis (FIA) system.


Interferences

Strong reducing agents such as thiosulfate at concentrations above 10 mg/L inhibit color formation. If samples were preserved with zinc acetate and adjusted to pH 9 or higher, the sulfide is complexed as zinc sulfide and coprecipitated with solids.


Samples with background absorbance at the analytical wavelength may interfere.

Turbidity in the sample may interfere. Mark the bottle at the water level. Filter or centrifuge turbid samples prior to preservation with zinc acetate. Allow all solids to settle to the bottle. Decant the aqueous portion of the sample to waste, being careful not to discard any solid. Refill the bottle to the mark with 0.01 N NaOH.

Aeration can result in loss of sulfide due to volatilization or reaction with oxygen. Shake sample solution prior to pouring aliquot and analyze immediately

Figure 3. Low Level Calibration Curve and Statistics

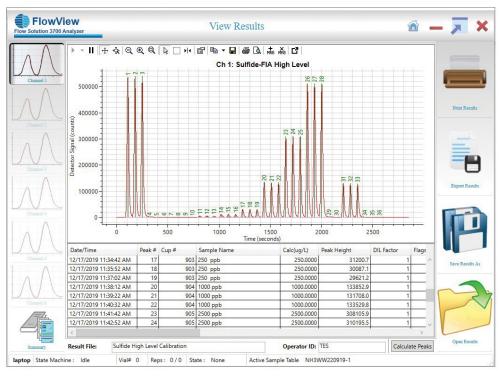
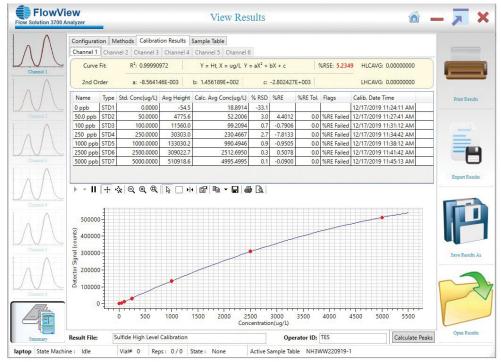



Figure 5. High Level Calibration Curve and Statistics

Ol Analytical, a Xylem brand 1725 Brannum Lane Yellow Springs, OH 45387

Brij® is a registered trademark of Croda International.

+1.979.690.1711
xylem-lab@xyleminc.com
oico.com

© 2023 Xylem, Inc. XA00252 0223 Method Part Number 324514

OI Analytical® is registered trademark of Xylem Inc. or one of its subsidiaries.